Abstract

The six-dimensional potential energy surface of the electronic ground state of N2HAr+ is determined by ab initio computations at the CCSD(T) level of theory. The potential energy surface is used to derive a set of spectroscopic data for N2HAr+ and N2DAr+ using second order perturbation theory. Full six-dimensional (6-D) rotation-vibration computations are also carried out using an analytical representation of the surface for J=0 and 1, in order to deduce the rovibrational spectra of N2HAr+ and its deuterated isotopomer. Our variationally determined anharmonic wavenumbers differ by less than 15 cm(-1) from the most accurate experimental values. Strong anharmonic resonances are found between the rovibrational levels of both cations even at low energies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call