Abstract
AbstractPrevious studies have demonstrated that the ocean‐bottom pressure associated with seismic seafloor motion is linearly proportional to the vertical seafloor acceleration, for frequencies much lower than the resonance frequency of water layer (c0/4h, c0 water sound speed, h water depth). In this article, we use realistic observations to verify a theoretical relation between the ocean‐bottom pressure and vertical acceleration up to the water resonance frequency. We then show two applications of the theoretical relation. First, the pressure amplitude recorded by differential pressure gauges is calibrated, and the calibration coefficient is found to vary by frequency. Second, Rayleigh wave phase velocity near the water resonance frequency can be calculated from recordings of pressure and vertical seafloor acceleration at a single station, which is useful to constrain the shallow Earth structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.