Abstract

Corrole-based covalent organic frameworks (COFs) are newly developing porous crystalline materials in the catalysis field due to their thermal stability, and ease of being functionalized by high-valent metal at the corrole center. In this work, based on the monolayer TPAPC-COF (m-TPAPC-COF), a series of stable metal corrole-based 2D monolayer SACs M1@TPAPC-COFs (M = Fe, Co, Ni, Cu, Ru, Rh, Os, Ir, Pt, Au) have been obtained by screening using density functional theory (DFT) calculations. As O2 can be adsorbed and activated on M1@TPAPC-COFs (M = Fe, Co, Ru, Rh, Os, Ir), we predicted two types of non-noble metal corrole-based COFs SACs, one is a bifunctional SAC Fe1@TPAPC-COF with high electrocatalytic activity for ORR/OER and the other is a Co1@TPAPC-COF with high electrocatalytic activity for OER, respectively. This work demonstrates that corrole-based COF is a promising 2D material for constructing high-performance SACs for the ORR and OER.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.