Abstract

Using density functional theory and nonequilibrium Greens function, the electronic structure and transport properties of chiral (6, 3) single-walled carbon nanotubes substituted by nitrogen atoms were investigated. The results show that the configurations and the concentration of the doped atoms have complicated effects on the transport properties of the chiral single-walled carbon nanotubes. The electronic structures of the carbon nanotubes are changed obviously. The transportation properties are degraded by the doping of nitrogen atoms and change significantly with the positions of impurity atoms in the structure. The currents-voltage curve shows nonlinear variation. Under certain conditions the metallic single-walled carbon nanotubes may be converted into semiconductors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.