Abstract

Singlet fission (SF) process, where a singlet exciton decays into a pair of spin one exciton states which are in the total spin singlet state, is one of the possible channels for multiple exciton generation (MEG). In chiral single-wall carbon nanotubes (SWCNTs), efficient SF is present within the solar spectrum energy range which is shown by the many-body perturbation theory calculations based on the density functional theory simulations. We calculate SF exciton-to-biexciton decay rates R1→2 and biexciton-to-exciton rates R2→1 in the (6,2), (6,5), (10,5) SWCNTs, and in the (6,2) SWCNT functionalized with Cl atoms. Within the solar energy range, we predict R1→2∼1014-1015 s-1, while biexciton-to-exciton recombination is weak with R2→1∕R1→2≤10-2. SF MEG strength in pristine SWCNTs varies strongly with the excitation energy, which is due to highly non-uniform density of states at low energy. However, our results for the (6,2) SWCNT with chlorine atoms adsorbed to the surface suggest that MEG in the chiral SWCNTs can be enhanced by altering the low-energy electronic states via surface functionalization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call