Abstract

Quantum gates are fundamental in Quantum computing for their role in manipulating elementary information carriers referred to as quantum bits. In this paper, a theoretical scheme for realizing a quantum Hadamard and a quantum controlled-NOT logic gates operations in the anti-Jaynes-Cummings interaction process is provided. Standard Hadamard operation for a specified initial atomic state is achieved by setting a specific sum frequency and photon number in the normalized anti-Jaynes-Cummings qubit state transition operation with the interaction component of the anti-Jaynes-Cummings Hamiltonian generating the state transitions. The quantum controlled-NOT logic gate is realized when a single atomic qubit defined in a two-dimensional Hilbert space is the control qubit and two non-degenerate and orthogonal polarized cavities defined in a two-dimensional Hilbert space make the target qubit. With precise choice of interaction time in the anti-Jaynes-Cummings qubit state transition operations defined in the anti-Jaynes-Cummings sub-space spanned by normalized but non-orthogonal basic qubit state vectors, ideal unit probabilities of success in the quantum controlled-NOT operations is determined.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call