Abstract

We presented a theoretical study for the structural, mechanical, and thermophysical properties of the precipitates in 2xxx series aluminum alloy by applying the widely used density functional theory of Perdew-Burke-Ernzerhof (PBE). The results indicated that the most thermodynamically stable structure refers to the Al3Zr phase in regardless of its different polymorphs, while the formation enthalpy of Al5Cu2Mg8Si6 is only -0.02 eV (close to zero) indicating its metastable nature. The universal anisotropy index of AU follows the trend of: Al2Cu > Al2CuMg ≈ Al3Zr_D022 ≈ Al20Cu2Mn3 > Al3Fe ≈ Al6Mn > Al3Zr_D023 ≈ Al3Zr_L12 > Al7Cu2Fe > Al3Fe2Si. The thermal expansion coefficients (TECs) were calculated based on Quasi harmonic approximation (QHA); Al2CuMg shows the highest linear thermal expansion coefficient (LTEC), followed by Al3Fe, Al2Cu, Al3Zr_L12 and others, while Al3Zr_D022 is the lowest one. The calculated data of three Al3Zr polymorphs follow the order of L12 > D023 > D022, all of them show much lower LTEC than Al substance. For multi-phase aluminum alloys, when the expansion coefficient of the precipitates is quite different from the matrix, it may cause a relatively large internal stress, or even produce cracks under actual service conditions. Therefore, it is necessary to discuss the heat misfit degree during the material design. The discrepancy between a-Al and Al2CuMg is the smallest, which may decrease the heat misfit degree between them and improve the thermal shock resistant behaviors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call