Abstract

AbstractA non‐perturbational technique is used to calculate the circular dichroism and absorption spectra of polypeptide chains having conformations similar to that of poly‐L‐proline II. The method employs a Bogoliubov exciton formalism, from which the various optical terms associated with parallel and perpendicular components of the exciton band are obtained. A simple model for the peptide unit, consisting of three Gaussian absorption bands, leads to reasonable results for the polymer spectra, provided the lowest energy peptide π → π* transition is taken at 207 mμ and the value of the Ramachandran angle Ψ is taken to be 390°. The calculations suggest that the polymer circular dichroism spectrum is the resultant of strong interference among the two Gaussian exciton terms and the non‐Gaussian helix term. Consequently, the CD spectrum is very sensitive to the value of Ψ. It is found that the small positive CD band in the vicinity of 230 mμ arises partly from the effect of the static (crystal) field interactions on the n → π* CD band.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.