Abstract
The absorption, circular dichroism (CD) and magnetic circular dichroism (MCD) spectra of native rat liver and crab ( Scylla serrata) Cd,Zn-metallothionein have been measured and the data are compared. The MCD data indicate that there are close similarities in the geometries of the cadmium-binding sites in both of these proteins; however, the CD spectra are quite different for the rat liver and crab proteins. The CD spectrum for the crab metallothionein is unlike any previously reported for a cadmium-containing metallothionein. This suggests that the CD spectrum is sensitive to the different bridging pattern used in the binding sites in the crab compared with the rat-liver metallothionein. Cadmium binding to the metal-free metallothionein is demonstrated for both proteins and it is shown that there are only minor structural differences between the native and remetallated proteins. The structural changes that occur near to the cadmium-binding sites during cadmium loading to the native proteins have been followed using absorption and CD spectroscopy. Marked changes are observed in the CD spectrum which can be associated with a two-phase reaction: initially Zn 2+ is displaced by the Cd 2+, then at higher concentrations of Cd 2+ the tetrahedral geometry of the Cd 2+-binding sites is lost as more Cd 2+ is bound using the same thiolate groups. While this latter reaction results in considerable change to the CD spectrum, only minor changes are observed in the absorption spectrum. A significant red shift is observed in the S → Cd charge transfer transition region of the MCD spectrum (230–270 nm) following both cadmium loading of native rat liver, Cd,Zn-metallothionein and the metallation of metal-free metallothionein with cadmium. There are two contributions to this effect in Cd,Zn-metallothionien: (i) there is a S → Zn band underlying the S → Cd band; and (ii) the occupation of zinc sites by cadmium changes the energy of the S → Cd transition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochimica et Biophysica Acta (BBA)/Protein Structure and Molecular Enzymology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.