Abstract

The rational development of new generations of MRI contrast agents (CAs) requires a scheme for predicting contrast enhancement. Previous contrast predictions have been based largely on empirical results in specific systems. Here we present a general theoretical model for evaluating the minimum concentration of T2 CA required for satisfactory image contrast. This analytic contrast model is applicable to a wide range of T2-type agents and delivery scenarios, and requires only a few readily evaluated parameters. We demonstrated the model by predicting contrast produced by superparamagnetic ferumoxide and the iron storage protein, ferritin. We then experimentally verified the predictions using suspensions of Feridex(R) and ferritin in phantoms. The model was also used to compare the contrast efficacy of the metal ions in two clinically approved T1- and T2-type CAs. In the Appendix we present a numerical formalism that is useful for relating image contrast and agent concentration when gradient-echo (GRE) T2*-weighted (T2*W) pulse sequences are used.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.