Abstract

A new approach to theoretical modelling and simulation of cutting forces in face milling is presented. Based on a predictive machining theory, the action of a milling cutter is modeled as the simultaneous actions of a number of single-point cutting tools. The milling forces are predicted from the workpiece material properties, cutter parameters, tooth geometry, cutting conditions and types of milling. The properties of the workpiece material are considered as functions of strain, strain-rate and temperature in the cutting region. It takes into account the effect of the intermittent contact between each milling tooth and the workpiece on the temperature in the cutting region. It also takes into account the effect of cutter runout on the undeformed chip thickness. Milling experiments have been conducted to verify the proposed model. Good agreements between the experimental and simulated results are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.