Abstract

Here, we extend a recently introduced theoretical-computational procedure [M. D'Alessandro, M. Aschi, C. Mazzuca, A. Palleschi, and A. Amadei, J. Chem. Phys. 139, 114102 (2013)] to include quantum vibrational transitions in modelling electronic spectra of atomic molecular systems in condensed phase. The method is based on the combination of Molecular Dynamics simulations and quantum chemical calculations within the Perturbed Matrix Method approach. The main aim of the presented approach is to reproduce as much as possible the spectral line shape which results from a subtle combination of environmental and intrinsic (chromophore) mechanical-dynamical features. As a case study, we were able to model the low energy UV-vis transitions of pyrene in liquid acetonitrile in good agreement with the experimental data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call