Abstract

Triboelectric nanogenerators (TENGs), using Maxwell's displacement current as the driving force, can effectively convert mechanical energy into electricity. In this work, an extensive review of theoretical models of TENGs is presented. Based on Maxwell's equations, a formal physical model is established referred to as the quasi-electrostatic model of a TENG. Since a TENG is electrically neutral at any time owing to the low operation frequency, it is conveniently regarded as a lumped circuit element. Then, using the lumped parameter equivalent circuit theory, the conventional capacitive model and Norton's equivalent circuit model are derived. Optimal conditions for power, voltage, and total energy conversion efficiency can be calculated. The presented TENG models provide an effective theoretical foundation for understanding and predicting the performance of TENGs for practical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.