Abstract

AbstractThe Reynolds Stress Model (RSM) yields the dynamic equations for the second-order moments (e.g., heat fluxes) needed in the equations for the mean variables (e.g., mean temperature). The RSM equations are in general time dependent and non-local. We first discuss the “buoyancy only” case and the tests of the non-local model against a variety of data. We also “plumenize” the model in order to exhibit the up-down flows that characterize convection so as to show that a non-local RSM is fully equipped to account for the “plume aspect” of buoyant flows. Next, we extend the RSM to account for stable and/or unstable stratification and shear, a formalism that is needed to describe the overshooting region contributed by differentail rotation. We conclude by discussing the equation for the dissipation of turbulent kinetic energy which plays a key role in any RSM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.