Abstract

In final optics assembly of high-power solid-state laser, in order to improve the third harmonic generation efficiency, the accurate assembly and calibration of ultra-thin KH2PO4 (KDP) crystal with large-aperture is one of the key technologies to realize inertial confinement fusion. In order to meet the requirements for high efficiency and precision crystal of online installation, it is necessary to measure crystalline phase matching angle for achieving the highest third harmonic conversion efficiency of high power laser. In this paper, for the third harmonic conversion by ultra-thin type Ⅰ/Ⅱ KDP crystals with large-aperture, the relationship between phase matching angles at different locations on the crystal is obtained according to the nonlinear optical properties of the crystal. Based on the analysis of the propagation path of the laser beam in the crystal, the relationship among the crystal surface shape, the phase matching angle and the best deflection angle is given. On this basis, the theoretical model for phase-matching angle of type Ⅰ/Ⅱ KDP crystal is proposed, and verified by the experimental results. The results show that the difference in phase matching angle between the prediction values and the experimental results is within 10.0 rad, showing that the theoretical model for phase-matching angles of type Ⅰ/Ⅱ KDP crystals is valid. This model provides a simple and efficient prediction method to obtain the phase matching angle distribution in full aperture of KDP crystal.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.