Abstract

T he general latent hardening law of single slip derived in the first paper of this series (H avner, B aker and V ause, 1979) is applied to an analysis of “overshooting” phenomena in bcc crystals in tension and compression. This new law, which predicts anisotropic hardening of latent slip systems, is based upon the simple theory of finite distortional crystal hardening introduced by H avner and S halaby (1977). Because of historical ambiguities regarding identification of the slip plane in bcc metals, parallel analyses are presented corresponding to two separate criteria: (i) slip on {110}, {112} and {123} crystallographic planes only; and (ii) slip on the plane of maximum resolved shear stress containing a 〈111〉 direction. It is established that the new hardening law is a theory of “overshooting” in bcc crystals according to either identification of the slip plane. A qualitative comparison between theoretical results and two experimental papers on Fe crystals is included. The general difficulties in making comparisons with the experimental literature on finite distortional latent hardening are briefly discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.