Abstract

Based on the dislocation structures developed during plastic deformation, an anisotropic hardening law is developed to describe the latent hardening behavior of slip systems under multislip. This theory incorporates the concept of isotropic hardening, kinematic hardening, and the two-parameter representation; it automatically includes the strength differential between the forward and reversed slips and between the acute and obtuse cross slips. The self-hardening modulus of a slip system is found to be “associated” with the latent hardening law involved, and, based on some experimental evidence, two specific sets of self-hardening modulus are suggested. An important feature of this associated modulus is that the slip system with a soft latent hardening (e.g., the reversed system with a Bauschinge effect) will have an enhanced self-hardening modulus. This newly developed hardening law, together with its associated latent hardening moduli, is then applied to examine the strain-hardening behavior of a polycrystal. Although crystals with a stronger latent hardening will, in general, also lead to a stranger strain-hardening for the polycrystal, the stress-strain behavior of the polycrystal using the kinematic hardening law of single crystals is found to be not necessarily softer than that using the isotropic hardening law. Within the range of experimentally measured latent hardening ratio of slip systems, the anisotropic theory is also used to calculate the motion of yield surface of a polycrystal. The general results, employing four selected types of anisotropic hardening, all show the essential features of experimental observations by Phillips and his co-workers. The application is highlighted with a reasonably successful quantitative modeling of initial and subsequent yield surfaces of an aluminum.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call