Abstract

To bridge length scales in plastic flow of polycrystalline fcc metals, the salient features of 3D polycrystalline elastoviscoplasticity at the crystal level (mesoscale) were studied to determine the relative influences on macroscale behaviour. This 3D study builds upon the 2D planar double-slip analysis performed by Horstemeyer and McDowell in which the relative influence of the constitutive-law features on macroscale properties in polycrystal plasticity were quantified for oxygen-free, high-conductivity copper. The mesoscale constitutive-law features considered include single-crystal elastic properties, slip-system-level hardening law, latent hardening, slip-system-level kinematic hardening, and intergranular constraint relation. Volume-averaged macroscale responses included the effective flow stress, plastic spin, elastic moduli, hardening behaviour, and axial extension (for the free-end torsion case). Each response was evaluated at 10% and 50% effective strain levels under rectilinear shear straining. In the existing literature, only one type of behaviour (e.g. texture or stress-strain response) is typically considered when assessing these various elements of the constitutive framework. In this paper, we develop a more comprehensive understanding of the relative importance of constitutive-law features as deformation proceeds. This study suggests that the design of experiments methodology is a valuable tool to assist in selecting relevant features for polycrystalline simulations and for development of macroscale unified-creep-plasticity models. In general, the results indicated that the intergranular constraint and kinematic hardening were more influential overall than the type of constitutive model used, whether isotropic or anisotropic elasticity was used, and whether or not latent hardening was used. Finally, 3D results were similar to the previous 2D planar double-slip study of Horstemeyer and McDowell, except that latent hardening had a stronger influence on the 3D macroscale responses than the 2D macroscale responses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call