Abstract

A global and systematic theoretical research on the singlet and triplet potential energy surfaces (PESs) of the CH2ClO2/CHCl2O2 with ClO reactions are done at the CCSD(T)//B3LYP level and accompanied with RRKM computations to forecast the mechanism and distribution of products. The simulation results revealed that, on the singlet PES, products P1 (CHClO + HO2 + Cl)/P1 (CCl2O + HO2 + Cl) from IM1 (CH2ClOOOCl)/IM1 (CHCl2OOOCl) are forecasted to the primary products of the CH2ClO2/CHCl2O2 + ClO reactions, which are initiated by the oxygen atom of ClO radical addition to the terminal-O atom of CH2ClO2/CHCl2O2 barrierlessly, while other product channels contribute less to the whole reactions owing to higher barriers. Two other isomers, including IM2 (CH2ClOOClO) and IM3 (CH2ClOClO2) for the CH2ClO2 + ClO reaction, and three other isomers, including IM2 (CHCl2OOClO), IM3 (CHCl2OClO2), and IM4 (CHCl2ClO3) for the CHCl2O2 + ClO reaction, could be produced as less significant products. RRKM calculations presented that the initial adducts IM1 (CH2ClOOOCl)/IM1 (CHCl2OOOCl) are the primary products at T < 400K and T < 600K, respectively, and products P1 (CHClO + HO2 + Cl)/P1 (CCl2O + HO2 + Cl) are dominant the reactions at T ≥ 400K and T ≥ 600K, respectively. The atmospheric lifetime of CH2ClO2 and CHCl2O2 in ClO is around 4.61 and 3.24h, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call