Abstract

Transthyretin (TTR) is a cerebrospinal fluid and plasma prevalent protein implicated in heritable and sporadic amyloidosis. Numerous mutations and a wide range of phenotypes have been associated with TTR-mediated amyloidosis. Among these, V30 M is the most predominant point mutation, inculpated with familial amyloid polyneuropathy (FAP), a life-threatening autosomal dominant genetic disorder characterized by the deposition of amyloid fibrils in crucial areas. Hence, efficacious therapeutics against this detrimental disorder is warranted. Lately, several peptide-based analeptics, especially the ones that are aggregation-prone and the ones derived from aggregation hotspots of amyloidogenic proteins are being increasingly proffered against the amyloid fibrils. In the present study, as an effective precursor to in vitro investigations, we examined and assessed the therapeutic potentials of aggregation-prone peptides (APPs) derived from TTR, against V30 M TTR amyloid fibrils, computationally. Out of five experimentally corroborated APPs availed for this study, molecular dynamics simulation analysis endorses APP TAVVTN to be an effective beta-sheet breaker against V30 M TTR amyloid fibrils. Furthermore, consistent findings from various molecular trajectory analyses, residual frustration analysis and simulated thermal denaturation have indicated that APP TAVVTN could effectually relater the structural dynamics of V30 M TTR amyloid fibrils, to conformationally digress it away from its amyloidogenic propensities. Hence, based on consistent unvarying findings from numerous adept computational pipelines, APP TAVVTN could be an efficacious analeptic to therapeutically intervene and mitigate the amyloidogenic propensities of V30 M TTR amyloid fibrils, thereby ameliorating the pathological ramifications due to FAP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call