Abstract

The structural, electronic and optical properties of mercury cadmium sulfide (Hg[Formula: see text]Cd[Formula: see text]S) alloys with [Formula: see text] = 0.0, 0.25, 0.5, 0.75 are studied using density functional theory (DFT) within full-potential linearized augmented plane wave (FPLAPW) method. We used the local density approximation (LDA), the generalized gradient approximation (GGA), Hubbard-corrected functionals (GGA/LDA[Formula: see text]+[Formula: see text][Formula: see text]) and the modified Becke–Johnson (LDA/GGA)-mjb hybrid potentials to treat the exchange-correlation functional [Formula: see text]. We found that LDA functional predicts better lattice constants than GGA functional. Mercury sulfide (HgS) binary alloy was found to exhibit a semi-metallic behavior using all functional with an inverted band gap close to the experimental value. However, the hybrid functionals were more successful than LDA and GGA functionals to predict the correct electronic structure of Hg[Formula: see text]Cd[Formula: see text]S ternary alloys. The results of the electronic and optical band gaps are consistent for Hg[Formula: see text]Cd[Formula: see text]S ternary alloys.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call