Abstract
Density functional theory and time-dependent (TDDFT) calculations were carried out for recently reported bisarylselanylbenzo-2,1,3-selenadiazoles derivatives capable of producing singlet oxygen (1O2) under UV-Vis irradiation. Conformational behaviors, excitation energies, singlet-triplet energy gaps, and spin-orbit coupling constants were evaluated. The conformational analysis evidences that two different conformers have to be taken into consideration to completely describe the photophysical properties of this class of molecules. TDDFT results show that these compounds, though possessing absorption wavelengths that fall in the violet region, are characterized by singlet-triplet energy gaps greater than the energy required to excite the molecular oxygen, thus being able to produce the cytotoxic species, spin-orbit coupling constants large enough to ensure efficient singlet-triplet intersystem spin crossing, and even the highly reactive superoxide anion O2 •(-) by autoionization and subsequent electron transfer to molecular oxygen in its ground state.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.