Abstract

The electronic structures and spectroscopic properties of four bisanthracene bis(dicarboxylic imide)s (M1-M4) have been investigated theoretically by using density functional theory (DFT) and its time-dependent extension (TDDFT) in view of their potential use as photosensitizers in photodynamic therapy (PDT). The optimized geometries, electronic absorption transitions, singlet-triplet energy gaps, spin-orbit matrix elements, ionization potentials, and electron affinities have been determined in gas phase and in solvent. Both type I and II PDT mechanisms have been considered. In addition, the variation of a series of relevant properties upon heavy atom substitution (Br and I) have been determined and discussed. Results show that only M4 is able to support the type I reaction, and one of its brominated and iodinated derivatives can produce cytotoxic singlet oxygen (type II reaction).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call