Abstract

Thermoelectric technology is attractive for waste heat recovery and clean energy; it is highly desired as a potential power supply. In this paper, we investigated the stability, elastic, electronic structures and thermoelectric properties of unexplored 2D materials, GeSb2Te4 and GeBi2Te4, which deliver high stability, acceptable cleavage energies (0.32–0.33 J/m2), and narrow band gaps of 0.80 and 0.69 eV. We also revealed that the septuple layers possess anisotropic electron and hole mobilities of about 1593.71/791.50 and 522.04/240.52 cm2/Vs, which result in high conductivities of 107–108 S/m, as well as desirable thermoelectric power factors of 28.08–70.382 mW/Km2. Besides, owing to the low group velocities and strong dissipative scattering for low-lying phonons, the materials inherit the low lattice thermal conductivities of 1.51 and 0.41 W/mK. As a result, their thermoelectric figure of merit reaches 1.60 and 1.70 at 300 K, and rises further to 3.80 and 4.16 at 700 K. Together, 2D GeSb2Te4 and GeBi2Te4 are suitable candidates for low-medium temperature thermoelectric application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.