Abstract

We report on our theoretical investigation of the electron velocity in (narrow) quantum Hall systems, considering the out-of-linear-response regime. The electrostatic properties of the electron system are obtained by the Thomas–Fermi–Poisson nonlinear screening theory. The electron velocity distribution as a function of the lateral coordinate is obtained from the slope of the screened potential within the incompressible strips (ISs). The asymmetry induced by the imposed current on the ISs is investigated, as a function of the current intensity and impurity concentration. We find that the width of the IS on one side of the sample increases linearly with the intensity of the applied current and decreases with the impurity concentration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.