Abstract

For quite a long time, the scientific community has been searching for a material that surpasses the existing material systems in terms of energy conversion efficiency for photovoltaic applications. In this study, the optoelectronic properties of pure and Al-doped boron arsenide B[Formula: see text]Al[Formula: see text]As [Formula: see text] in the zinc blende (ZB) structure were systematically examined using the density functional theory (DFT) and the Modified Becke–Johnson (TB-mBJ) exchange correlation (XC) potential. The Perdew–Burke–Ernzerhof generalized gradient approximation (PBE) functional was used for structural optimization. After considering the ground state lattice constant of 4.82[Formula: see text]Å then calculating the bandgap energy of pure BAs, which are consistent with experimental and theoretical findings, we estimated the basic electronic and optical characteristics of Al-doped boron arsenide, including band structures, electronic density of state, dielectric function, refractive index, extinction coefficient, absorption and optical conductivity. The unusual and interesting optoelectronic features of the investigated compounds revealed in this work offer substantial promise for improving the energy conversion efficiency of solar cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call