Abstract
Understanding the mechanisms of viscosity enhancement in crude oil phases is crucial for optimizing extraction and transportation processes. The enhanced viscosity mechanism of crude oil phase can be attributed to the intricate intermolecular interactions between asphaltene molecules. However, the molecular mechanism of the viscosification of asphaltene molecules in crude oil is not yet to be fully understood. In this work, molecular dynamics simulations were employed to investigate the dynamic behavior and viscosification mechanism of asphaltene molecules in complex oil phases. Research suggests that the neutral surface of asphaltenes features abundant positive and negative electrostatic potential regions, facilitating complementary pairing between these areas. This significantly augments electrostatic interactions among asphaltene molecules. Besides, the expansive nonpolar expanse on the normal asphaltene surface facilitates interactions between asphaltenes and crude oil molecules. This leads the crude oil viscosity of the system containing normal asphaltene is higher than that of the system containing acidic asphaltene under the same mass fraction (382 μ Pa·s for AAsp and 416 μ Pa·s for NAsp). This work provides insight into the viscosity enhancement mechanisms in crude oil phases and is helpful in improving the efficiency of crude oil extraction and transportation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.