Abstract
Predicting molecular properties with the help of Neural Networks is a common way to substitute or enhance comprehensive quantum-chemical calculations. One of the problems facing researchers is the choice of vectorization approach to representing the solvent and the solute for the estimator model. In this work, 10 different approaches have been investigated for both organic solute and solvent including vectorizers that relied on macroscopic parameters, functional groups classification, molecular graphs, or atomic coordinates. A variation of the Bag of Bonds approach called JustBonds, trained on the MNSol database, showed the best overall performance resulting in RMSD < 2 kcal/mol for the blind dataset that contains the solutes not presented in the training subset and < 1 kcal/mol on records from Solv@TUM database, which is close to contemporary continuum models. We have also demonstrated that the most important bags usually contain heteroatom and play a key role in the solvation process. Furthermore, the small role of solvent vectorization was demonstrated and revealed that approaches based on functional groups or macroscopic solvent parameters are often enough to efficiently represent solvent media.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.