Abstract

The time-dependent thermal compressible elastohydrodynamic lubrication of a sliding line contact has been developed to investigate the effect of a sudden load change. The time-dependent modified Reynolds equation with non-Newtonian fluids has been formulated using a power law model. Properties of non-Newtonian dilatant fluids for solid-liquid lubricants have been studied experimentally using two common solid particles; namely, molybdenum disulfide and polytetrafluoroethylene. The simultaneous systems of modified Reynolds, elasticity, and energy equations with initial conditions were solved numerically using a multigrid multilevel technique. The performance characteristics of the thermoelastohydrodynamic line contact were presented with varying dimensionless time for the pressure distribution, temperature distribution, and oil film thickness. The transient response of the line contact between two infinitely long cylindrical surfaces was simulated under a heavy step load function. The coefficients of friction were also presented in this work at steady condition with varying particle concentration. This simulation showed a significant effect of solid particles on thermoelastohydrodynamic lubrication under heavy load conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call