Abstract
Electrocatalytic urea synthesis from CO2 and nitrate/nitrite is promising as a sustainable strategy to alleviate the dependency on fossil resources and CO2 release. The complicated synthesis steps and controversial C-N coupling mechanism restrict the design of efficient catalysts to satisfy industrial application. Herein, based on density functional theory calculations on metals (Au, Ag, Pd, Cu, and Ni) and micro-kinetic analysis, the C-N coupling mechanism is clarified as CO2+ N1 species (NO*, NOH*, or N*). The formed chemical adsorption of CO2 on the surface is found as an indicator to directly exclude the inactive metal catalysts. Furthermore, the descriptors of hydrogen and oxygen adsorption energy are successfully related to the catalysis performance, and the catalysts with moderate hydrogen adsorption and strong oxygen adsorption strength are predicted with the outstanding performance, which is validated by the experimental results. These insights would be helpful to identify and design high-performance catalysts for electrocatalytic urea synthesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.