Abstract

The kinetics of intermolecular chain transfer to polymer (CTP) and chain transfer to monomer (CTM), as well as backbiting in solution copolymerization of ethylene and vinyl acetate (VAc), are calculated by density functional theory. An intrinsic rate coefficient for each reaction type, whose Arrhenius parameters are expressed as functions of unreacted monomer composition, is extracted from calculated elementary reactions, and hence it applies to a wide range of fragment compositions of EVA. Backbiting controls the generation of midchain radicals (MCRs) on the backbone, and its rate maximizes at a medium fraction of VAc in the unreacted monomers. CTP plays an insignificant role in MCR generation even at high conversion rates due to its low pre-exponential factor. The concentration of MCRs is quantified and is close to that of ECRs at high conversions and high fractions of VAc in monomers. Additionally, branching characteristics are explored; concentrations of short-chain branching (SCB) and long-chain branching (LCB) are about 0.7-2.5 and 0.1-0.4%, respectively, and drop with VAc fraction rapidly. The role of the migration of MCRs is highlighted, which transforms about 10% of SCB points into LCB points. Disagreeing with insights from laboratory experiments, it is the migration, rather than CTP, which increases the LCB concentration at high conversions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call