Abstract

A nanomaterial equation of state has been combined with Grüneisen approximation in present work to investigate the influence of high pressure on phonon density of state function of C60 through evaluating variations of lattice vibration frequencies and variation of mode density. Furthermore, the effect of high pressure on Debye temperature has been determined by using a formula of volume dependence of Debye temperature. Volume compression ratio in C60 has been computed, using a nanomaterial equation of state. Expressions of pressure dependence of phonon density of state and Debye temperature have been combined with volume compression ratio value. The evaluated result of volume compression ratio and phonon density of state have been compared with the experimental observations and good agreement can be seen.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call