Abstract

Space-based biomanufacturing has the potential to improve the sustainability of deep space exploration. To advance biomanufacturing, bioprocessing systems need to be developed for space applications. Here, commercial technologies were assessed to design space bioprocessing systems to supply a liquid amine carbon dioxide scrubber with active carbonic anhydrase produced recombinantly. Design workflows encompassed biomass dewatering of 1 L Escherichia coli cultures through to recombinant protein purification. Non-crew time equivalent system mass (ESM) analyses had limited utility for selecting specific technologies. Instead, bioprocessing system designs focused on minimizing complexity and enabling system versatility. Three designs that differed in biomass dewatering and protein purification approaches had nearly equivalent ESM of 357–522 kg eq. Values from the system complexity metric (SCM), technology readiness level (TRL), integration readiness level (IRL), and degree of crew assistance metric identified a simpler, less costly, and easier to operate design for automated biomass dewatering, cell lysis, and protein affinity purification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.