Abstract
Dye-sensitized solar cells (DSSCs) have gained widespread interest for their potential as low-cost solar energy conversion devices. One of the key issues is the design of higher efficient light-absorbing dyes. In this paper, we present a theoretical characterization of ruthenium complexes containing functionalized bithiophene (btp) ligands ( CYC–B1 and CYC–B11) based on density functional theory (DFT) calculations. Molecular geometries, electronic structures, and optical absorption spectra are investigated both in the gas phase and in dimethylformamide (DMF) solution. Frontier orbital analysis shows the three highest HOMOs are composed of nonbonding combinations of the Ru t 2g orbitals with the p orbital and lone pairs of the SCN ligands, while the six lowest LUMOs are the π* combinations of the 4,4’-dicarboxy-2,2’-bipyridine (dcbpy) and/or btp-functionalized bipyridine (bpy) ligands calculated in the gas phase. Inclusion of solvent results in great changes in energies and compositions of the molecular orbitals of these complexes. The spectra are assigned to the intraligand π → π* transitions of the dcbpy ligand in the ultraviolet region, whereas in the visible region the spectra show multitransition character of metal-to-ligand charge transfer (MLCT), interligand π → π*, and intraligand π → π*. Our results clarify the role of the functionalized btp ligands on the absorption properties of the dyes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.