Abstract
Design of light-absorbent dyes with cheaper, safer, and more sustainable materials is one of the key issues for the future development of dye-sensitized solar cells (DSSCs). We report herein a theoretical investigation on a series of polypyridyl Cu(I)-based complexes with general formula [CuLL′]+ (L and L′ represent bipyridyl ligands) by density functional theory (DFT) and time-dependent DFT. Molecular geometries, electronic structures, and optical absorption spectra are predicted in both the gas phase and methyl cyanide solution. Our results show that all the [CuLL′]+ derivatives display Cu → bipyridine metal-to-ligand charge transfer absorption spectra in the range of 350−700 nm. Structural optimizations by enhancing π-conjugation and introducing heteroaromatic groups on ancillary ligands lead to upshift of molecular orbital energies, increase in oscillator strength, and red shift of absorption spectra. Compared with Ru(II) sensitizers, polypridyl Cu(I)-based complexes show similar optical properties an...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.