Abstract
The adhesion, stability, electronic structure, and bonding of Fe/WC interfaces were studied using first-principles calculations. The preferred stacking sequence is HCP structure that Fe atoms continue the natural stacking sequence of the bulk WC. For two different interfaces with HCP stacking geometry (C-HCP and W-HCP), the work of adhesion of the optimized Fe/WC interfaces are 9.7Jm−2 for C-HCP and 5.1Jm−2 for W-HCP, respectively. The effects of the interface on the electronic structures of both the metal Fe and ceramic WC are mainly localized within the first and second layers of the interface. C-HCP interface has strong covalency and W-HCP interface is dominated by metallic bonds. The magnetic moments of Fe atoms at interface are decreased in both interfaces. Calculations of the interfacial energies provide theoretical evidence for the excellent wear behaviors of Fe/WC composites. Besides, the chemical bonding properties for the interfacial atoms are also discussed in this paper based on Milliken population method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.