Abstract
Reduction of threading dislocation density (TDD) in epitaxial germanium (Ge) on silicon (Si) has been one of the most important challenges for the realization of monolithically integrated photonics circuits. The present paper describes methods of theoretical calculation and experimental verification of a novel model for the reduction of TDD. The method of theoretical calculation describes the bending of threading dislocations (TDs) based on the interaction of TDs and non-planar growth surfaces of selective epitaxial growth (SEG) in terms of dislocation image force. The calculation reveals that the presence of voids on SiO2 masks help to reduce TDD. Experimental verification is described by germanium (Ge) SEG, using an ultra-high vacuum chemical vapor deposition method and TD observations of the grown Ge via etching and cross-sectional transmission electron microscope (TEM). It is strongly suggested that the TDD reduction would be due to the presence of semicylindrical voids over the SiO2 SEG masks and growth temperature. For experimental verification, epitaxial Ge layers with semicylindrical voids are formed as the result of SEG of Ge layers and their coalescence. The experimentally obtained TDDs reproduce the calculated TDDs based on the theoretical model. Cross-sectional TEM observations reveal that both the termination and generation of TDs occur at semicylindrical voids. Plan-view TEM observations reveal a unique behavior of TDs in Ge with semicylindrical voids (i.e., TDs are bent to be parallel to the SEG masks and the Si substrate).
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have