7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.61089/aot2024.gaevsp41
Copy DOIJournal: Archives of Transport | Publication Date: Sep 30, 2024 |
License type: CC BY 4.0 |
Analysis of works in the field of artificial intelligence allows to make an assumption that today there is a sufficiently developed theoretical basis for the development of intelligent control systems for locomotive control. This will minimize the risks associated with the human factor on the railways. The paper presents the theoretical rationale for the development of a knowledge base for intelligent locomotive control systems. The approach and structure of the self-learning system of intelligent DSS is proposed, the advantage of which is the presence of a fuzzy classifier that works according to the set criteria and determines a fuzzy image of the current train situation. Learning a fuzzy classifier consists in finding a vector K that minimizes the distance between the results of logical inference and experimental data from the sample. The knowledge base is implemented using linguistic variables formalized by methods of fuzzy logic. The use of linguistic values makes it possible to design the base using the usual language of communication, which greatly simplifies both the design process itself and the analysis of the system's performance. Also, the knowledge base has the possibility of constant self-improvement. This happens in two ways. The first is by adding new rules to the knowledge base in case the current situation does not match the existing ones in the base, in which case an additional rule is created and checked for adequacy. The second way is a mechanism for ranking rules in the knowledge base. If the control action of the locomotive driver coincided with the recommendation of DSS in the current situation, then the rating of this recommendation (rule) increases, and in the future the rule selection algorithm will choose one or another control action for the current situation that has the highest rating (that is, it has already been verified several times person). The experiment has shown that the use of intelligent DSS has positive results. On average, the DSS made the correct train control decisions faster than the locomotive driver.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.