Abstract

Using the block-iterative frequency domain method and the nonorthogonal FDTD method, the photonic band gap (PBG) and spectral properties are investigated for a new class of two-dimensional (2-D) trigonal structures with an approximately circular or exagonal "atom" shape formed by holographic lithography. Calculations of band structures as a function of the intensity threshold show that the PBG of 2-D titania arrays opens only for TM polarization, and directional PBG can open for TE and TM polarization simultaneously. In addition, up to four sizeable full PBGs can open for an inverted GaAs triangular structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.