Abstract
In this work, we study the vibration and bending response of functionally graded graphene platelets reinforced composite (FG-GPLRC) rectangular plates embedded on different substrates and thermal conditions. The governing equations of the problem along with boundary conditions are determined by employing the minimum total potential energy and Hamilton’s principle, within a higher-order shear deformation theoretical setting. The problem is solved both theoretically and numerically by means of a Navier-type exact solution and a generalized differential quadrature (GDQ) method, respectively, whose results are successfully validated against the finite element predictions performed in the commercial COMSOL code, and similar outcomes available in the literature. A large parametric study is developed to check for the sensitivity of the response to different foundation properties, graphene platelets (GPL) distribution patterns, volume fractions of the reinforcing phase, as well as the surrounding environment and boundary conditions, with very interesting insights from a scientific and design standpoint.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.