Abstract

The energy transportation and accumulation effect for femtosecond (fs) laser ablation on metal targets were studied using both theoretical and experimental methods. Using finite difference method, numerical simulation of energy transportation characteristics on copper target ablated by femtosecond laser was performed. Energy accumulation effects on metals of silver and copper ablated by an amplified Ti: sapphire femtosecond laser system were then studied experimentally. The simulated results show that the electrons and lattices have different temperature evolvement characteristics in the ablation stage. The electron temperature increases sharply and reaches the maximum in several femtoseconds while it needs thousands of femtoseconds for lattice to reach the maximum temperature. The experimental results show that uniform laser-induced periodic surface structures (PSS) can be formed with the appropriate pulsed numbers and laser energy density. Electron-phonon coupling coefficient plays an important role in PSS formation in different metals. Surface ripples of Cu are more pronounced than those of Au under the same laser energy density.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call