Abstract

We report experiments on the ablation of arsenic trisulphide and silicon using high-repetition-rate (megahertz) trains of picosecond pulses. In the case of arsenic trisulphide, the average single pulse fluence at ablation threshold is found to be >100 times lower when pulses are delivered as a 76-MHz train compared with the case of a solitary pulse. For silicon, however, the threshold for a 4.1-MHz train equals the value for a solitary pulse. A model of irradiation by high-repetition-rate pulse trains demonstrates that for arsenic trisulphide energy accumulates in the target surface from several hundred successive pulses, lowering the ablation threshold and causing a change from the laser-solid to laser-plasma mode as the surface temperature increases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call