Abstract
This study proposes a novel nonlinear low-frequency vibration isolator with quasi-zero stiffness (QZS) based on a symmetric link-rod-type structure. The principle of the isolator is analyzed, and the properties of the vibration isolator are investigated experimentally. Varying displacements with a restoring force and stiffness are acquired by a static model; thus, the QZS conditions and system contributing factors are elucidated. Various effects of the excitation amplitude, damping ratio, rod length ratio, and initial spring compression ratio on the displacement transmissibility, which are determined using the harmonic balance method (HBM), are discussed. Through a series of experiments on the isolator prototype, the performance of a QZS vibration-isolation system with a symmetric link-rod-type structure is validated. The results indicate that the presented symmetric link-rod-type QZS vibration isolator has a wider QZS interval, lower frequency of vibration isolation, and better isolation performance, providing a valuable reference for the design of QZS vibration isolators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.