Abstract
This paper studies the performance of a memoryless power amplifier (PA) linearization technique based on a probabilistic approach. This technique employs a nonparametric method to derive a predistorter function, which does not need any parametric modeling and explicit parameter estimation. It only needs to calculate a probabilistic cumulative distribution function (CDF) and a quantile function (an inverse function of the CDF). Histogram and order statistic methods are proposed to perform the calculation. A rigorous analytic formula is derived for the inter-modulation product power (IMPP) of the PA output signal when a finite number of samples as well as a finite number of bins are used to calculate the CDF and the quantile function. The analytic results show that, with the probabilistic-based technique, the IMPP approaches zero as the number of samples approaches infinity and the bin width approaches zero.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.