Abstract
AbstractA new library of modular amino phosphite ligands obtained in a few synthetic steps from enantiopure amino alcohols has been tested in asymmetric Pd‐catalyzed allylic substitution. The modular ligand design is crucial to find highly selective catalysts for each substrate type using a wide range of C‐, N‐, and O‐nucleophiles. A DFT study of the species responsible for the enantiocontrol was used to optimize the ligand structure. By selecting the ligand components, we were able to identify unprecedented catalytic systems that can create new chiral C−C, C−N, and C−O bonds in a variety of substrate types (hindered and unhindered) in high yields and enantioselectivities (ee values up to 99 %). Further studies on the Pd‐π‐allyl intermediates provided a deep understanding of the effect of ligand structure in the origin of enantioselectivity. Potential applications of the new Pd/amino phosphite catalysts were demonstrated by the practical synthesis of a range of chiral carbocycles by simple tandem reactions, with no loss of enantioselectivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.