Abstract

AbstractCracked concrete members with fiber‐reinforced polymer (FRP) reinforcement generally suffer from increased deflections compared to steel‐reinforced members due to FRP reinforcements' lower modulus of elasticity. An approach to counteract this problem can be the prestressing of the FRP reinforcement, which can significantly reduce member deflections. However, time‐dependent prestress losses occur due creep and shrinkage of the concrete and relaxation of the prestressing tendons. Within the first part of this article, mathematical approaches to determine relaxation rates from creep tests are introduced. Subsequently, short‐term and long‐term tensile tests under sustained load on glass and basalt FRP reinforcement bars are presented. Based on the experimental data and the mathematical model, relaxation rates for the investigated specimens are derived. In addition, using an approach based on logarithmic extrapolation, the relaxation rates at 1 million hours (end of service life) are calculated, and the experimentally determined residual tensile properties are evaluated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.