Abstract

AbstractIt is well‐known that shear failure is a collapse mechanism that is the riskiest, fastest, and catastrophic and occurs with no visible signs of damage or prior warning for RC beams. Therefore, to prevent brittle shear failure, the RC beams should include sufficient shear reinforcement, such as stirrups, and be designed to have sufficient shear capacity. However, the RC beams' shear capacity becomes inadequate for various reasons. One of these reasons may be the acting of the impulsive impact load, which is uncommon and disregarded in the design phase on the RC beams. An experimental program was conducted to examine the impact behavior and failure mode of shear‐deficient RC beams in the scope of the present study. Besides, it aims to investigate the effectiveness of the strengthening method using CFRP strips in improving the general behavior, failure mode, and performance of shear‐deficient RC beams exposed to impact load. The time histories of the accelerations, displacements, impact loads, and strains in the CFRP strips were measured. They were interpreted how they are affected by experimental variables examined in the experimental study. Furthermore, the finite element model of the specimens was generated in the LS‐DYNA software, and the experimental and numerical results were compared by performing finite element analysis in terms of failure modes and general behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.