Abstract

Among the available laser applications, laser melting has turned out to be a powerful technique for the production of mechanically improved surfaces. To enhance the understanding of the laser melting process investigations into modeling of the heating mechanism initiating the laser melting are necessary. In the present study, a mathematical modeling of the laser melting process is introduced and power require ments for the laser melting are predicted as functions of workpiece properties and velocity. Maximum melt width is predicted analytically and compared with the experimental results. In this regard, an experiment is conducted to melt the mild steel samples with a cw CO 2 laser at different power settings and workpiece velocities. It is found that the melt variables predicted from theory are in agreement with the experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.