Abstract
The selective laser melting (SLM) technology, a 3D printing method, has been gaining more attraction recently due to its ability to fabricate highly complex and intricate featured medical, aerospace, automotive components. The extensive use of SLM in recent years has been augmented by readily available processing materials and distinct product features such as enhanced surface properties and improved mechanical strength of the printed products. This paper investigated the effects of support structures, building direction and post-processing on mechanical properties, surface roughness and microscopic analysis of parts printed by SLM. Support structures are required during the SLM printing process. It is desired to optimize the support structures, as this increases printing time and material consumption and reduces surface finish. Finite element analysis has been carried out prior to metal printing to optimize the support structure. It was found that the spider-cone line support shows efficient structure for this study. The mechanical properties of the fabricated specimen were studied, and experimental results were validated and compared with conventionally machined specimen. It was observed that the SLM printed parts have 20% increment in tensile strength as compared with conventionally cast specimen. However, the percent of elongation is low for SLM specimen due to large number of pores and un-melted powder presented in the printed part. In this study, the SLM specimens were subjected to heat treatment at the temperature of 550 °C for 2 h in order to achieve increment or optimal mechanical properties. The heat treatment demonstrated a 2-fold increment in elongation, as compared with the SLM as printed specimen. The present study is also aimed at evaluating the surface roughness of SLM printed specimen. It was observed that the surface roughness of SLM specimen ranged between ~ 0.3 and 3 μm. This demonstrated that SLM process is capable of providing the good surface quality component and considered an alternative process to conventional manufacturing process. The morphological studies have been carried out to support the results derived from the evaluation of mechanical properties and surface roughness. The morphological behaviour clearly shows the large pores and un-melted particles in fractured specimen. The results revealed that the support structure, build direction, orientation, surface finish and post-processing are important parameters to build a part using SLM effectively and efficiently.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Journal of Advanced Manufacturing Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.