Abstract

Described are the characteristics of a new MOS gated thyristor structure called the base resistance controlled thyristor (BRT), in which the turn-off of a thyristor built with an N drift region is achieved by reducing the resistance of the p-base region under MOS gate control. A p-channel MOSFET used to achieve turn-off is formed in the N drift region. The device is designed so that, when the p-channel MOSFET is switched on, holes are diverted from the p-base region of the thyristor into the adjacent p/sup +/ region, raising the holding current of the thyristor above the operating current level, and turning off the thyristor. Results of extensive 2-D numerical simulations that have been performed to demonstrate operation of this new device concept are discussed. Experimental results on 600-V devices fabricated with an IGBT process have corroborated theoretical predictions. Current densities above 900 A/cm/sup 2/ have been turned off at room temperature with a gate bias of -10 V.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.